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A recent analysis of the four-point correlation function of the passive scalar advected by a time-decorrelated
random flow is extended to theN-point case. It is shown that all stationary-state inertial-range correlations are
dominated by homogeneous zero modes of singular operators describing their evolution. We compute analyti-
cally the zero modes governing theN-point structure functions and the anomalous dimensions corresponding
to them to the linear order in the scaling exponent of the two-point function of the advecting velocity field. The
implications of these calculations for the dissipation correlations are discussed.@S1063-651X~96!05808-4#
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I. INTRODUCTION

There has been much effort lately to understand the be-
havior of a scalar quantity passively advected by a random
flow with a Gaussian statistics decorrelated in time@1#. This
simple model, of its own interest, has served as a prototype
of a turbulent system. It is believed that its behavior may
teach us important lessons about the fully developed hydro-
dynamical turbulence. One of the interesting aspects of the
passive scalar which has been recently understood@2–4# is
the origin of the breakdown of Kolmogorov inertial-range
scaling in the higher structure functions of the scalar. It has
been realized that the dominant contribution to the structure
functions comes from the zero modes of the differential op-
erators describing the stochastic evolution of the correlation
functions of the scalar. In this paper we extend the results of
Ref. @2# by presenting the computation of the anomalous
dimensions of theN-point structure functions in the first or-
der of the parameterj. Exponentj, which in @2# was denoted
k and in@3# 22g, is the growth rate of the two-point struc-
ture function of the velocities of the advecting flow. The
present work was motivated by@5# where a similar analysis
in the first order in inverse dimension was sketched.

The equation governing the passive scalar in a turbulent
flow is

] tT1~u–¹!T2nDT5 f . ~1!

HereT(x,t) describes the scalar, e.g., the temperature, and
f the forcing term whose role is to compensate the dissipa-
tion caused by the term proportional to the molecular diffu-
sivity n. The velocity fieldu with ¹•u50 is supposed to be
random. We shall work ind>3 space dimensions and shall
assume homogeneity, isotropy, and parity invariance of the
advecting flow and of the forcing.

The statistics of the forcing term is assumed to be Gauss-
ian with mean zero and two-point function

^ f ~x,t ! f ~y,t8!&5CS x2y
L D d~ t2t8!. ~2!

The rotation-invariant functionC(x/L), which could be cho-
sen to be a Gaussian, varies on scaleL.

The statistics of the velocity field, independent of the
forcing, is also supposed to be Gaussian with zero mean and
with the two-point functions

^ua~x,t !ub~y,t8!&5Dab~x2y!d~ t2t8!,

with ]aD
ab50. ~3!

To analyze the scaling property of the scalar correlation
functions we shall use the following expression forDab:
Dab(x)5D(0)dab2dab(x), with

dab~x!5DS ~d1j21!dab2j
xaxb

uxu2 D uxuj, ~4!

wherej is a parameter, 0,j,2, see@2# for a description of
the origin of this expression. Clearly, the above distribution
for u is far from realistic. It mimics, however, the growth of
the correlations of velocity differences with separation dis-
tance, typical for turbulent flows. The fact that the two-point
functions~2! and~3! are white noise in time is crucial for the
solvability of the model. The parameterj fixes the naive
dimensions under the rescalingsx→mx, L→mL. The naive
dimension ofu is j/2 and ofT is (22j)/2. ScaleL serves as
an infrared cutoff and the ‘‘Kolmogorov scale’’
h5(n/D)1/j as an ultraviolet cutoff.

We shall be interested in the correlation functions of the
scalar in the inertial rangeh!x!L. The main result of this
paper is that in this range the stationary-state, equal-time,
even structure functions scale with the anomalous exponents
rN as

^@T~x,t !2T~0,t !#N&>aNS Luxu D
rN

uxu~22j!N/2, ~5!

with
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rN5j
N~N22!

2~d12!
1O~j2!. ~6!

The exponents are universal depending only onj but the
amplitudesaN are not: they depend on the shape of the co-
variance C. The error term is bounded by
O„(L/uxu)221O(j)uxu(22j)N/2

… so it is strongly suppressed for
largeL/uxu. As it should be, therN’s satisfy the Ho¨lder in-
equality rN>@(N22)/2#r4. More precise descriptions and
statements will be given below. The formula~6! agrees with
theN54 result of@2# and with the 1/d expansion of@3,5#.

Following Ref. @2#, we shall derive the values of the
anomalous exponents by analyzing in perturbation theory in
j the zero modes of differential operators characterizing the
stationary state. Although forj50 one observes a purely
diffusive behavior ofT and forj.0 an inertial energy cas-
cade, the zero modes differ little in both cases. Their behav-
ior in j may be controlled by perturbation theory of singular
elliptic operators with discrete spectrum. Different physics
arises from the cumulative effect of the zero modes. As al-
ready stressed in@2#, this resembles the situation in the
renormalization group analysis in field theory or statistical
mechanics where relevant perturbations, controllable in the
single scale problem, may have large effects on the behavior
of the system. As in the renormalization group study of criti-
cal models, the first order perturbative corrections to the zero
modes lead to the resummation of leading infrared loga-
rithms in the perturbation expansion of the structure func-
tions in powers ofj. Pursuing the analogy further, we shall
introduce, as in the perturbative renormalization group, the
notion of matrix of anomalous dimensions, see also@5#.

Our results can be used to deduce the scaling properties of
the correlation functions of the dissipation field, which we
denote bye(x), as discussed, for example, in@3,6#. At finite
diffusivity nÞ0, the dissipation field is defined~inside cor-
relators! by e(x)5n limx8→x(¹T)(x8)•(¹T)(x). This is a
sensible definition since at finiten the correlations ofT and
their first derivatives are not singular at coinciding points
~the higher derivatives are!. In the limit n→0, we have al-
ternative definitions:

e~x!5 lim
n→0

n lim
x8→x

~¹T!~x8!•~¹T!~x! ~7!

or

e~x!5 lim
x8→x

1
2 @dab~x2x8!]xa]x8b# lim

n→0
T~x8!T~x!. ~8!

The order of the limits in the first definition is crucial
since when n→0 and for small ux2x8u, T(x)T(x8)
;ux2x8u22j modulo more regular terms so that
(¹T)(x)•(¹T)(x8);ux2x8u2j and becomes singular. The
noncommutativity of the limitsn→0 and x8→x is at the
origin of the dissipative anomaly. The second definition of
e(x) is in the spirit of the operator product expansion in the
n50 theory. Using the Hopf identities~10! for the correla-
tion functions, we shall argue that both expressions for the
dissipation fielde(x) coincide forj,1. The mean dissipa-
tion ē[^e(x)& is equal to12 C(0), i.e., to the mean injection
rate of energy. The dissipation field has zero naive scaling

dimension sinceT2(x) andd(x)¹x
2 have opposite naive di-

mensions. However, as a consequence of the relation~8!, one
finds thate(x) acquires an anomalous scaling. In fact, the
definition ~8! and Eq.~16! allow one to compute any struc-
ture functions with~noncoincident! insertions of the dissipa-
tion field. For example, the connected two-point function of
e scales as

^e~x!,e~0!&c;S Luxu D
r4

~9!

and it decreases withuxu, in agreement with the physical
picture of the dissipation being a local process. Similarly, the
n-point functions ofe scale with exponentsr2n . The short
distance singularity in Eq.~9! is an unphysical artifact of the
assumed short distance scaling of the advecting velocity,
mollified in real systems by viscosity.

The same method allows one to obtain information about
the dissipative terms appearing in the differential equations
obeyed by the structure functions and to compare our results
with the early attempts@7# to calculate the anomalous expo-
nents of the passive scalar and with the more recent ideas@8#
about the behavior of the probability distribution functions in
the turbulent systems.

II. INERTIAL-RANGE SCALING AND THE ZERO MODES

The correlation functions ofT satisfy the~Hopf! identities
which may be deduced using standard functional manipula-
tions of stochastic differential equations, see, e.g.@9#, or, for
the present context,@10#. In the stationary state, the odd cor-
relations vanish and the even ones satisfy at equal times the
identities

S 2n(
j51

N

D j1
1
2D~d21!MND ^T~x1!•••T~xN!&

5(
j,k

C~xjk /L !^T~x1! •••
ĵ

•••
k̂
T~xN!&, ~10!

with xjk[xj2xk , D j denoting the Laplacian in thexj vari-
able, and withMN standing for the differential operators
given by

1
2D~d21!MN52

D~0!

2 S (
j51

N

¹xj D 2
1

1
2(
jÞk

dab~xjk!]x
j
a]x

k
b. ~11!

The first operator on the right-hand side of Eq.~11! is zero
by translation invariance andMN is a sum of the two-body
operators. Forn.0, the operators appearing on the left-hand
side of Eqs.~10! are elliptic and positive. We may use their
Green functions to solve the equations inductively. This will
produce equal-time stationary correlators decaying at infin-
ity. Physically, they describe the stationary state obtained by
starting, e.g., from a fixed localized configuration of the sca-
lar and waiting long enough.

Notice that atj50 the operatorMN reduces in the
translation-invariant sector to the Laplacian inN variables
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xj : MNuj5052DN52( j51
N

D j . This implies thatT be-
comes a Gaussian field atj50 with the higher correlation
functions built in the standard way from the two-point ones.
The stationary state coincides then with that of the forced
diffusion with the effective diffusion constant equal to

n1 1
2D(d21).
We shall describe the inertial-range correlators by taking

the limit n→0 at fixed positionsxj and fixed large infrared
cutoff L. It is not important that positionsxj be disjoint as
long as we do not take derivatives of the correlators, see the
remarks after Eq.~8!. In the limit n→0, the correlation func-
tions satisfy Eq.~10! but without the termsnD. These equa-
tions completely determine the inertial-range correlators up
to zero modes of operatorsMN . Physically, the zero-mode
contributions are fixed by the fact that we consider the sys-
tem which is the limit of the one with positive diffusivity
n. Mathematically, this means that in order to inductively
solve Eqs.~10! we should use Green functions of the singu-
lar elliptic operatorsMN . Such Green functions are limits of
the Green functions of the nonsingular operators correspond-
ing to then.0 case. It has been argued in Refs.@2–4# that
the zero modes of operatorsMN effectively appear in the
inertial-range correlators and give the dominant contribu-
tions in the limitL→`.

The zero modes in question are homogeneous under dila-
tion, invariant by translations, rotations, parity, and symmet-
ric under permutations ofN points. SinceMN is a sum of
two-body differential operators, zero modes ofMN21 lead
by symmetrization to zero modes ofMN . More precisely, if
f N21(x1 , . . . ,xN21) is a zero mode ofMN21, then

f N~x1 , . . . ,xN!5 (
sPSN

f N21~xs~1! , . . . ,xs~N21!!, ~12!

where the sum is over the permutations ofN objects, is a
symmetric zero mode ofMN . These zero modes will never
contribute to the structure functions^) j@T(xj )2T(yj )#&. At
j50, the zero modes ofMN52DN are polynomials. For
any evenN.2 there is only one ‘‘new’’ zero mode of scal-
ing dimensionN that cannot be expressed as a symmetrized
sum of the zero modes ofMN21. We shall denote it byE0
~of course,E0 is defined only up to a combination of the
latter!. Explicitly,

E0~x1 , . . . ,xN!5 (
pairings $~ l2 ,l1!%
1< l2, l1<N

)
~ l2 ,l1!

xl2 l1
2 1@ . . . #

~13!

where the dots@ . . . # refer to quantities which may be writ-
ten as a~symmetrized! sum of functions depending only on
N21 variables.

The two-point function of the scalar in the inertial range is
@1,10#

^T~x1!T~x2!&5const2
2ē

~22j!Dd~d21!
ux12u22j

1O~L22ux12u42j!, ~14!

with const5O(L22j). It follows that atj50, whereT be-
comes a Gaussian field,

^T~x1!•••T~xN!&uj50>cN
0E0~x1 , . . . ,xN!1@ . . . #,

~15!

wherecN
05(2 ē/Dd(d21))N/2. The error not contained in

the @ . . . # terms is bounded byO„L22(maxuxjku)N12
….

Upon switching on positivej, the symmetric zero modes
of degreeN will evolve to zero modes ofMN with a modi-
fied homogeneity. They may be found by the degenerate per-
turbation expansion. Again, only one of them will not come
from the zero modes ofMN21. We shall call itF0. Although
for j positive,T is no longer a Gaussian field, its correlation
functions may be inductively computed from Eq.~10!. In
particular, it is easy to see that the simple expressions

AN (
1< j,k<N

uxjku~22j!N/2,

where the coefficients

AN5
2~N22!!

~N/2!! S 2 ē

~22j!D~d21! D
N/2

)
l50

N/221

@d1~2

2j!l #21

satisfy the version of Eq.~10! with n50 andL5`. This
scaling solution obviously leads to vanishing higher structure
functions and cannot give the right answer for the inertial-
range correlators. The homogeneous zero modes of the op-
eratorsMN , which enter already at the first inductive step
@the constant in Eq.~14!#, modify the answer. At further
inductive steps, the previous step modifications will induce
new ones which, however, all give rise to combinations
@ . . . # of functions depending on fewer variables except,
eventually, for the terms proportional to zero modes of
MN . If the homogeneity degree of the zero mode is smaller
than (22j)(N/2), the proportionality constant will contain a
compensating positive power ofL and may give the contri-
bution dominating the largeL structure functions if the zero
mode is not of the@ . . . # type. Indeed, for small positivej
there is only one non-@ . . . #-zero mode which we have de-
noted byF0. Its homogeneity degree is (22j)(N/2)2rN
with positiverN , as will be demonstrated below.

As a result, for smallj.0,

^T~x1!•••T~xN!&>cNL
rNF0~x1 , . . . ,xN!1@ . . . #,

~16!

with the non-@ . . . # error bounded by O„L221O(j)

3(maxuxjku)N121O(j)
…. For j not very small, the perturbations

of zero modes which atj50 have degree higher thanN may
eventually enter the interval of scaling dimensions smaller
than (22j)(N/2) and give non-negligible or even dominant
contributions to the structure functions. The largeL and
j→0 limits of the correlation functions ofT do not commute
since the terms scaling with different powers ofL become
degenerate forj50, see@2#. These limits, however, do com-
mute for the structure functions involving only theF0 con-
tribution scaling as LO(j) and the error bounded by
L221O(j). As F0uj505E0, it follows by comparison of~15!
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and ~16! that the amplitudecN5cN
01O(j). TheO(j) con-

tributions to the amplitudescN depend on the shape of cova-
rianceC and hence are not universal.

The relation~16! implies the behavior~5! of theN-point
structure functionsSN(x)[^@T(x)2T(0)#N&. In the Gauss-
ian limit,

SN~x!uj505aN
0 uxuN, ~17!

where

aN
05

N!

~N/2!! S ē

Dd~d21! D
N/2

.

It follows from the continuity of the structure functions
at j50 that the amplitudeaN in Eq. ~5! is equal to
aN
01O(j).
In the perturbation expansion in powers ofj,

F05E01jG01O~j2!. ~18!

In the next sections, we shall compute theO(j) contribution
G0 ~modulo @ . . . # terms!. Inserting the decomposition~18!
into ~16!, we obtain an asymptotic expression for the struc-
ture functions which, although obtained by the first order
zero-mode analysis, contains all orders inj resumming the
series(anj

n(lnL)n of logarithmic infrared divergences ap-
pearing in the expansion of the structure functions in powers
of j. This is the situation well known from the perturbative
renormalization group where the first order approximation to
the single renormalization group step leads upon iterations to
the resummation of the leading logarithms in the perturbative
expansion of correlation functions.

III. ANOMALOUS DIMENSIONS AT O„j…

Let us discuss the perturbative calculation of the homoge-
neous zero modes ofMN . At the first order inj we have

MN52DN1jVN1O~j2!,

with DN the Laplacian inN variables andVN given by

VN5 (
1< jÞk<N

S dablnuxjku2
1

~d21!

xjk
a xjk

b

uxjku2
D ]x

j
a]x

k
b

2
1

~d21!
DN . ~19!

Note that, sinceMN is a homogeneous operator of dimen-
sion j22, we have

F( xj
a]x

j
a,VNG52DN22VN . ~20!

Let E be a symmetric homogeneous zero mode of
MNuj50 of degreeN. We shall search for the zero mode of
MN of the formF5E1jG1O(j2). The zero-mode equa-
tion gives at the order linear inj

2DNG1VNE50. ~21!

The solutionsG of this equation are clearly defined up to
zero modes ofDN . Note that due to the scaling properties of
E andVN ,

2DNS ( xj
a]x

j
a2NDG52S ( xj

a]x
j
a2N12DDNG

52S ( xj
a]x

j
a2N12DVNE

5DNE50. ~22!

Hence the functionE8[((xj
a]x

j
a2N)G is necessarily a zero

mode ofDN . We shall show that there exist solutionsG of
Eq. ~21! such thatE8 are homogeneous polynomials of de-
gree N. Such solutions are defined up to degreeN zero
modes ofDN but this ambiguity does not show up inE8. We
obtain this way a linear transformation

G:E°E8

of the space of symmetric homogeneous zero modes ofDN
of degreeN. If (Ea) is a basis of this space then the matrix
(Gb

a) of this transformation given byEb85Gb
aEa plays the

role of thematrix of anomalous dimensionsat first order in
j. Indeed, ifE5vbEb is an eigenvaluel eigenvector of the
transformationG, i.e., if (vb) is an eigenvector of matrix
(Gb

a), then, for the corresponding solution of Eq.~21!, we
obtain

S ( xj
a]x

j
a2NDG5lE ~23!

or

S ( xj
a]x

j
a2N2jl D ~E1jG!5O~j2!, ~24!

which means thatE1jG is homogeneous of orderN1jl
up toO(j2). Hence the homogeneous zero modes ofMN are
perturbations of thej50 zero modes corresponding to
eigenvectors of the matrix of anomalous dimensions. If the
matrix (Gb

a) is not totally diagonalizable then there will be
logarithmic corrections to the zero-mode homogeneity@10#.

Reflecting the fact that all but one zero modes ofMN are
obtainable from those ofMN21 by symmetrization, the ma-
trix of anomalous dimension is block triangular. Namely,

~Gb
a!5S G0

0 0

G0
a8 Gb8

a8D
if the matrix is written in a basis„E0 ,(Ea8)… whereE0 is the
zero mode defined in Eq.~13! and (Ea8) forms a basis of the
degreeN zero modes arising by symmetrization of functions
depending on at mostN21 variables. The matrix element
G0
0 is necessarily an eigenvalue of the matrix (Gb

a). If by an
adequate choice of the@ . . . # terms in its definitionE0 be-
comes the corresponding eigenvector of the transformation
G thenF05E01jG01O(j2) describes the perturbed homo-
geneous zero mode ofMN andG0

0 gives theO(j) correction
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to the scaling exponent ofF0 equal toN in the leading order.
The anomalous exponent of theN-point structure function is
therefore given by

rN52jSN2 1G0
0D ~25!

since the naiveN-point scaling dimension is (22j)(N/2).
In principle it may happen~although it does not at least

for N52,4,6) thatG0
0 is a degenerate eigenvalue ofG and

there is no corresponding eigenvectorE0. It is easy to see,
however, that even in this case there exists a zero mode
F05E01jG01O(j2) ofMN which is homogeneous of de-
greeN1jG0

01O(j2) up to @ . . . # terms~the homogeneous
terms are accompanied by the ones with powers of loga-
rithms, the latter appearing in the@ . . . # subspace!. Such
modifications would not affect the analysis of the structure
functions.

IV. LEADING ORDER CORRECTIONS
TO THE ZERO MODES

Let us return to the analysis of Eq.~21!. We shall search
for the solutionG in the form

G5(
jÞk

~Hjklnuxjku!1H, ~26!

with Hjk andH polynomials of degreeN. For such a solu-
tion,

E8[S ( xj
a]x

j
a2NDG5(

jÞk
H jk ~27!

would necessarily be a zero mode ofDN of degreeN, as
required. We shall see that there indeed exist solutions of
~21! of the form~26! ~unique up to degreeN zero modes of
DN) and that the polynomialsHjk scale asuxjku2 when
uxjku→0 assuring that the logarithms in~26! do not lead to
divergent singularities in the correlation functions ofT at
coinciding points. Note, however, that the divergences at co-
inciding points start to appear in the correlation functions
involving double derivatives ofT or products of two first
derivatives.

The substitution of the ansatz~26! into Eq. ~21! gives a
set of three equations forHjk andH:

DNH jk5¹j•¹kE, ~28!

~d221xjk•¹jk!Hjk1
1

2~d21!
~xjk

a xjk
b ]x

j
a]x

k
b!E

52
1
2 xjk

2 Kjk , ~29!

DNH5(
jÞk

K jk , ~30!

where Kjk are polynomials of degreeN22 and ¹ jk
[¹j2¹k with ¹j5(]x

j
a). Equation~30! is for free since any

polynomial of degreeN22 is in the image ofDN acting on

polynomials of degreeN. Thus, given the solutionHjk of
Eqs. ~28! and ~29!, there always exists a degreeN polyno-
mialH solving Eq.~30! and it is unique up to the zero modes
of DN .

We are thus left with solving Eqs.~28! and~29!. We shall
first prove that there is a unique solution of these equations
and then we shall produce the solution when the initial zero
modeE is the ‘‘new’’ zero modeE0 defined by Eq.~13!.
Notice that this is now Eq.~28! which implies that
( jÞkH jk is a zero mode ofDN . By symmetry, we may spe-
cialize Eqs.~28! and ~29! to j51,k52. Let us work in the
variablesx5(x11x2)/2, y5x12, andx3 , . . . ,xN . We have
x12•¹1252y•¹y . Since y•¹y counts the degree iny, we
shall decompose all terms entering in Eq.~29! into a sum of
terms of given degree iny. Namely, H125(N

p50H12
(p) ,

K125(p50
N22K12

(p) , and

2
1

2~d21!
~x12

a x12
b ]x

1
a]x

2
b!E5 (

p52

N

Ẽ~p!,

with H12
(p) , K12

(p) , andẼ(p) homogeneous polynomials iny of
degreep. The operator (d2212y•¹y) is invertible on such
homogeneous polynomials. Equation~29! implies then that

H12
~0!5H12

~1!50,

H12
~p!5

1

d2212p S Ẽ~p!2
1
2 y

2K12
~p22!D for 2<p<N.

The fact thatH12
(0)5H12

(1)50 implies that H12 scales as
ux12u2 whenx1→x2. Equation~28! may then be rewritten as

2DyH12
~p!5~¹1•¹2E!~p22!2D'H12

~p22!

for p>2, whereD'5
1
2Dx1( j53

N D j . With the use of the

previous relation betweenH12
(p) andy2K12

(p22) the latter equa-
tion takes the form

Dy~y
2K12

~p!!5 f p

for some recursively known homogeneous polynomialsf p .
These equations may be solved forK12

(p) sinceDyy
2 is an

invertible operator on the space of homogeneous polynomi-
als of fixed degree.

Let us find the deformed zero modeF0 which at j50
reduces toE0 of Eq. ~13!. To solve Eqs.~28! and ~29! ~by
symmetry, we may again setj51 andk52), we first have to
compute (¹1•¹2)E and (x12

a x12
b ]x

1
a]x

2
b)E.

~¹1•¹2!E522~d1N22!( 8 )
~ l2 ,l1!

xl2 l1
2 1@ . . . #12,

~31!
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~x12
a x12

b ]x
1
a]x

2
b!E522x12

2 ( 8 )
~ l2 ,l1!

xl2 l1
2

12 (
3< j,k<N

~x1 j
2 2x2 j

2 !~x1k
2 2x2k

2 !

3( 9 )
~ l2 ,l1!

xl2 l1
2 1@ . . . #12, ~32!

where (8 denotes the sum over pairings$( l2 ,l1)% with
3< l2, l1<N and(9 a similar sum but with, additionally,
l6Þ j ,k. The symbol@ . . . #12 refers to a sum of terms which
do not depend on at least onexp with p>3. Recall from the
proof of existence of solutions of Eqs.~28! and ~29! that
H12 has to scale at least asux12u2 asx1→x2. It follows then
that it must be of the form

H125aL121bx12
2 ( 8 )

~ l2 ,l1!
xl2 l1
2 1@ . . . #12 ~33!

for some coefficientsa andb where

L125 (
3< j,k<N

~x1 j
2 2x2 j

2 !~x1k
2 2x2k

2 !( 9 )
~ l2 ,l1!

xl2 l1
2 .

~34!

Note two properties ofL12:

~x12•¹12!L1254L12, ~35!

DL12524~N22!( 8 )
~ l2 ,l1!

xl2 l1
2 1@ . . . #12. ~36!

The first relation just means thatL12 is a homogeneous func-
tion of x12 of degree 2. It implies that

~d221x12•¹12!H125~d12!H121@ . . . #12.

Comparing this with relation~32!, we obtain from Eq.~29!
the value of the coefficienta:

a52
1

~d21!~d12!
.

Next, it follows from relation~36! that

DH125S 4~N22!

~d21!~d12!
14dbD( 8 )

~ ł2 ,l1!
xl2 l1
2 1@ . . . #12.

Comparison of Eqs.~28! and ~31! gives the value of the
coefficientb:

b52
1

d S N22

~d21!~d12!
1
d1N22

2 D .
This completely determinesH12 up to terms@ . . . #12.

Finally, in order to find the anomalous dimensionG0
0, we

recall that the matrix of anomalous dimensions is found by
looking at( jÞkH jk , cf. Eq. ~27!. G0

0 is obtained by project-
ing relation~27! on E0 using the triangular structure of the
transformationG. Gathering all the terms in Eq.~33!, we
obtain after a simple algebra

(
jÞk

H jk52
N~d1N!

2~d12! (
pairings $~ l2 ,l1!%
1< l2, l1<N

)
~ l2 ,l1!

xl2 l1
2 1@ . . . #

52
N~d1N!

2~d12!
E01@ . . . #.

Thus

G0
052

N~d1N!

2~d12!
52

N

2
2
N~N22!

2~d12!
, ~37!

which via Eq. ~25! leads to the claimed value~6! of the
anomalous exponentrN .

V. DISSIPATION FIELD

Let us sketch the argument for the equality of two defini-
tions ~7!,~8! of the dissipation fielde(x) at n50. First, we
shall retrace the self-consistency arguments about the short
distance behavior of the correlation functions@3,6#. These go
as follows. By separating terms, the Hopf identity~10! may
be rewritten in the form

[2nD12nD21
1
2D~d21!M~1,2!] ^T~x1!T~x2!T~x3!•••T~xN!&

5(
j53

N

[nD j2
1
2D~d21!~M~1,j !1M~2,j !!] ^T~x1!•••T~xN!&

2
1
2D~d21! (

3< j,k<N
M~ j ,k!^T~x1!•••T~xN!&1(

j,k
C~xjk /L !^T~x1! •••

ĵ
•••
k̂
T~xN!&, ~38!

where the two-point operator
1
2D(d21)M( j ,k)[dab(xjk)]x

j
a]x

k
b. In variablesx5(x11x2)/2 andy5x12 the left-hand side of

Eq. ~38! becomes

[22nDy2dab~y!]ya]yb2
1
2 nDx1

1
4d

ab~y!]xa]xb] ^T~x1!•••T~xN!&.

Equation~38!, with the use of the latter decomposition and of the relation]xa5]x
1
a1]x

2
a52( j53

N ]x
j
a, allows us to write
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@22nDy2dab~y!]ya]yb#^T~x1 1
2 y!T~x2 1

2 y!T~x3!•••T~xN!&5R, ~39!

where R is a combination of terms involving onlyxj derivatives and at most firsty derivatives of

^T(x1 1
2 y)T(x2 1

2 y)T(x3)•••T(xN)&. Let us assume that the limit whenx12→0 of ^T(x1)T(x2)T(x3)•••T(xN)& and of
^(¹T)(x1)T(x2)T(x3)•••T(xN)& and of their derivatives overxj , j>3, exists uniformly in smalln.0 ~for separated
x,x3 , . . . ,xN). Then, as in the analysis of the two-point function~with anisotropic forcing!, one infers from Eq.~39! that

^T~x1 1
2 y!T~x2 1

2 y!T~x3!•••T~xN!&5c1uyu2@n1 1
2 D~d21!uyuj#21

1 zero modes of@22nDy2dab~y!]ya]yb#1error, ~40!

the coefficients depending onx,x3 , . . . ,xN and the
error more regular whenn→0 andy→0. The zero modes
contain a polynomial of the first order iny. Of the
remaining zero modes the most dangerous one comes
from the angular momentum 2 sector and it

behaves as O(uyua2) for n! 1
2 D(d21)uyuj, where

a25
1
2 @2d122j1A(d221j)218d#.22j, and as

O(uyu2) for 1
2 D(d21)uyuj!n. All such terms and their first

y derivatives have limits wheny→0 uniformly in smalln.
As we see, our assumptions about the correlators ofT are at
least self-consistent. They are confirmed by ourO(j) com-
putation of the structure functions. Indeed, atn50 and for
largeL the structure functions receive the dominant contri-
bution from the zero modesF0 of MN which behave like
jO(uyu2)lnuyu modulo a first order polynomial iny and
O(j2) terms, in agreement with the above analysis. Note that
thejO(uyu2)lnuyu contribution toF0 is not rotationally invari-
ant in y: it receives contributions from both theO(uyu22j)
and the O(uyua2) angular momentum 2 terms in
^T(x1)•••T(xN)&.

Let us use our self-consistent assumptions about
^T(x1)•••T(x2)& in a version of Eq.~39!:

@2n¹1•¹21dab~x12!]x
1
a]x

2
b#^T~x1!T~x2!T~x3!•••T~xN!&

5R8. ~41!

ExpressionR8 involves only terms with at most one deriva-
tive overx1 or x2. Therefore limn→0limx12→0R8 should exist

and be equal to limx12→0limn→0R8. The same limits applied
to the left-hand side of~41! give, depending on the order, the
definition ~7! or ~8! of the dissipation field insertione(x),
provided thatj.0. Indeed, under firstx12→0 and then
n→0 limits thed(x12)¹1¹2 term disappears due to vanish-
ing of d(x) at zero while sendingn→0 before thex12→0
limit kills the n¹1•¹2 contribution. Hence the equivalence of
two definitions for 0,j,1.

By similar arguments, all three limits limn→0, limx12→0,

and limj→0 commute in the action onR8. Applying them on
the left-hand side of Eq.~41!, we infer that atn50

lim
j→0

e~x!5
1
2D~d21!@¹T~x!#2 ~42!

and it describes the dissipation field of the scalarT diffusing
with the diffusion constant12 D(d21) and dissipating en-

ergy on long scales. Note that the right-hand side may be
viewed as a direct application of the second definition~8! at
j50 whereas the application of the first one~7! would give
e(x)50: the equivalence of the definitions breaks down at
j50. At n50, thex8→x andj→0 limits do not commute
for (¹T)(x8)(¹T)(x) although they do commute for
T(x8)T(x) or for (¹T)(x8)T(x). This is due to the disap-
pearance of the distinction between the dissipative and the
inertial-range behavior atj50. A straightforward calcula-
tion employing the relation~42! shows that at noncoinciding
points

lim
L→`

lim
j→0

^e~x1!, . . . ,e~xn!&
c52n21~n21!!d12nēn.

~43!

In particular, fielde(x) becomes constant in space atj50
andL5`, in agreement with the physical picture of dissipa-
tion becoming a large scale phenomenon whenj→0.

The inertial-range decay~9! follows from Eq. ~16! with
the use of the definition~8! of the dissipation field and of the
fact that^e(x)&25 ē2 gives for largeL a subdominant con-
tribution to^e(x),e(0)&c, see@6# for a similar analysis. From
Eq. ~43! we infer that the proportionality constant in~9! is
equal to 2ē2/d1O(j). Similarly, the mixed correlation func-
tions

^e~x1!•••e~xn!T~y1!•••T~ym!&

scale with the infrared cutoff asLr2n1m and with positions
with exponent (22j)(m/2)2r2n1m , in accordance with the
fusion rule arguments of@12,13#.

VI. EQUATIONS FOR STRUCTURE FUNCTIONS

Much of the past attempts to understand the behavior of
the structure functionsSN was based on the differential equa-
tions satisfied by them@7#. These equations may be obtained
from the N-point function equation~10! in the following
way. Let d j (x,y) denote the difference operator acting on
functions ofN variablesf (x1 , . . . ,xN) by subtracting their
values atxj5x andxj5y. d j (x,y) commute for differentj
and ^@T(x)2T(y)#N&5) jd j (x,y)^T(x1), . . . ,T(xN)&. Ap-
plication of) jd j (x,y) to Eq. ~10! results in the identity

2dab~x!]xa]xbSN~x!1N~N21!FCS xL D2C~0!GSN22~x!

5JN~x!, ~44!
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with the dissipative contribution

JN~x!52nN^~DT!~x!@T~x!2T~0!#N21&. ~45!

Alternatively, Eq. ~44! may be obtained directly from the
basic stochastic differential equation~1!. Despite prefactor
n, the termJN does not vanish whenn→0 due to the dissi-
pative anomaly. Indeed, coefficientn may be absorbed into
the insertions of the dissipation field:

JN~x!52nDSN~x!22N~N21!^e~x!@T~x!2T~0!#N22&

——→
n→0

22N~N21!^e~x!@T~x!2T~0!#N22&un50 .

~46!

The mutual nonsingularity ofe(x) and @T(x8)2T(0)#N at
x5x8 andn50, which has been assumed in the last expres-
sion forJN , may be checked by a self-consistent analysis or
directly for the perturbative solution.

Our result~5! about the asymptotics of the structure func-
tions and Eq.~44! imply that atn50 and for largeL

JN~x!>2bN~L/uxu!rNuxu~22j!~N22!/2, ~47!

with

bN5D~d21!S ~22j!
N

2
2rND S d1~22j!

N22

2
2rNDaN .

Note that the last expression may be rewritten as

JN~x!>
a2bN
aNb2

J2
SN~x!

S2~x!
. ~48!

This relation may be confirmed by a direct calculation of
JN to orderO(j) from the dominant zero-modeF0 contribu-
tion to the correlation functions.

In the inspiring paper@7#, Kraichnan attempted to obtain
anomalous exponents from Eq.~44! by assuming a relation
similar to ~48! but with

a2bN
aNb2

5
@~22j!~N/2!2rN#$d1~22j!@~N22!/2#2rN%

~22j!d

replaced byN/2. This was further argued for in@6#. Kraich-
nan’s assumption led upon insertion into~44! to the qua-
dratic equation for the scaling dimensionzN[(22j)
3(N/2)2rN ,

zN~zN1d221j!5~22j!d
N

2
,

whose solution gave the anomalous exponentsrN . Note that
the replacement of the factorN/2 on the right-hand side of
Kraichnan’s equation forzN by a2bN /aNb2 leads instead to a
tautological identity.

Kraichnan’s values ofrN , unlike the ones obtained in the
present work, do not vanish atj50. The latter might seem
strange in view of the fact thatT becomes a Gaussian field at
j50 and the ansatz of@7# was fit with the Gaussian calcu-

lation. The latter was based, however, on the definition~45!
applied directly in the Gaussian case whereas atj50 one
should use forJN the expression~46! with e(x) given by Eq.
~42!. The latter calculation agrees, of course, with Eq.~48!:

JN~x!uj5052bN
0 uxuN22, ~49!

where bN
05D(d21)N(d1N22)aN

0 see Eq.~17!. In this
limit, the differential equation ~44! reduces to
2D(d21)DSNuj505JNuj50.

Above, we have studied the inertial-range behavior of the
structure functions. More general objects to study are the
joint probability distribution functions ~PDF’s!
PN(T1 , . . . ,TN ; x1 , . . . ,xN) of the scalar whose moments
give the equal-time correlation functions. In particular, the
structure functionŝ) j@T(xj )2T(yj )#& are special moments
of the PDF’s

QN~T1 , . . . ,TN ;x1 , . . . ,xN!5E PN~T11t, . . . ,TN

1t;x1 , . . . ,xN!dt, ~50!

which are translational invariant in theT variables. The gen-
erating function ofSN’s,

Z~l;x![^eil@T~x!2T~0!#&5E eilTQ~T;x!dT ~51!

is a Fourier transform of the PDFQ(T12T2 ;x12)
[Q2(T1 ,T2 ;x1 ,x2).

In a recent paper@8# on the Burgers equation, Polyakov
has argued that the structure-function PDF’s exhibit a uni-
versal inertial-range behavior for~translating his statements
to the passive scalar case! Ti!Trms where Trms
[A^T(0)2&5O(L12j/2), see Eq.~14!. Polyakov’s analysis
was based on postulating an operator product expansion
which allows us to close the resummed version of Eq.~44!,

2dab~x!]xa]xbZ~l;x!1l2FC~0!2CS xL D GZ~l;x!

5J~l;x!, ~52!

by expressing its right-hand side J(l;x)
[(N@( il)N/N! #JN(x)52l2^e(x)eil@T(x)2T(0)#& again in
terms ofZ(l;x). The resulting equation forZ may be re-
duced to an ordinary differential equation by imposing the
scaling relation

@2x•¹2~22j!l]l#Z~l;x!50, ~53!

i.e., by postulating thatZ(l;x) depends onl2uxu22j. Note
that a strictly scaling solution forZ(l;x) implies either the
Kolmogorov scaling or divergence of the structure functions.
For example, the resummation of the expressions~17! for the
j50,n50,L5` structure functions gives the Gaussian gen-
erating function

Z~l;x!uj505expF2
ē

Dd~d21!
l2uxu2G , ~54!
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which scales in accordance with the normal scaling of the
j50 structure functions. It corresponds to the Gaussian
PDF. A straightforward check shows that atj50 the dissi-
pative termJ may be simply expressed in terms ofZ itself:
J52ēl2@11(1/d)l]l#Z.

Our smallj analysis of the passive scalar does not allow
us to prove or disprove Polyakov’s picture since the indi-
vidual structure functions that we study probe the smalll
behavior ofZ, i.e., the largeT behavior ofQ(T). What fol-
lows from it is that the largeT tails of the PDF’s violate
scaling forj.0. In particular, the solution~5!, ~6! for SN’s
leads to the relation

F2x•¹2S 22
jd

d12Dl]l1
j

d12
~l]l!2GZ~l;x!5O~j2!.

~55!

It would be interesting to recover the tail of the structure-
function PDFQ in the orderO(j). This would require the
knowledge of theO(j) contributions to the nonuniversal am-
plitudesaN in the relation~5! which we have not computed.
It is possible that they may be found by a perturbative analy-
sis of instanton contributions to the functional integral for the
dynamical scalar correlators@11#. We expect that the refined
perturbative analysis inj will allow a better control of both
the structure functions and the corresponding PDF’s.
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