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Anomalous scaling in theN-point functions of a passive scalar
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A recent analysis of the four-point correlation function of the passive scalar advected by a time-decorrelated
random flow is extended to tHé-point case. It is shown that all stationary-state inertial-range correlations are
dominated by homogeneous zero modes of singular operators describing their evolution. We compute analyti-
cally the zero modes governing tiNepoint structure functions and the anomalous dimensions corresponding
to them to the linear order in the scaling exponent of the two-point function of the advecting velocity field. The
implications of these calculations for the dissipation correlations are discySHi63-651X96)05808-4

PACS numbds): 47.27.Gs, 47.27.Te

I. INTRODUCTION X—y
(f(x,t)f(y,t’))zC(T) S(t—t"). 2
There has been much effort lately to understand the be-

havior of a scalar quantity passively advected by a randomrh S iant f . LY. which | ho-
flow with a Gaussian statistics decorrelated in tirhg This ser? trgtsgo: énglssrgg:] li/';cr:g@ézlsiél\g ich could be cho

simple model, of its own interest, has served as a prototype The statistics of the velocity field, independent of the

of a turbulent system. It is believed that its behavior mayforcing is also supposed to be Gaussian with zero mean and

teach us important lessons about the fully developed hydro\ivith thé two-point functions

dynamical turbulence. One of the interesting aspects of the
assive scalar which has been recently undersf@ed] is @ I — N aBy Y

Fhe origin of the breakdown of Kolmoéorov inertial-range (U uA(y,t') =D*x=y)s(t-t"),

scaling in the higher structure functions of the scalar. It has with ,D**=0. 3

been realized that the dominant contribution to the structure

functions comes from the zero modes of the differential op-To analyze the scaling property of the scalar correlation

erators describing the stochastic evolution of the correlatiofunctions we shall use the following expression Bf”:

functions of the scalar. In this paper we extend the results of *4(x) =D (0)5*#—d*#(x), with

Ref. [2] by presenting the computation of the anomalous

dimensions of théN-point structure functions in the first or- xxB

der of the parametey. Exponenté, which in[2] was denoted d*#(x)=D| (d+&—-1)8F— ¢ X2 |x|¢, (4)

x and in[3] 2— v, is the growth rate of the two-point struc-

ture function of the velocities of the advecting flow. The

present work was motivated %] where a similar analysis

in the first order in inverse dimension was sketched.

The equation governing the passive scalar in a turbuler{lﬁ

flow is

where¢ is a parameter, € £<2, sed 2] for a description of
the origin of this expression. Clearly, the above distribution
r u is far from realistic. It mimics, however, the growth of
e correlations of velocity differences with separation dis-
tance, typical for turbulent flows. The fact that the two-point
functions(2) and(3) are white noise in time is crucial for the
HT+(u-V)T—vAT=f. (1) solvability of the model. The parametér fixes the naive
dimensions under the rescalings> ux, L— ulL. The naive

Here T(x,t) describes the scalar, e.g., the temperature, andimension ot is £/2 and ofT is (2—¢)/2. ScaleL serves as

f the forcing term whose role is to compensate the dissipa@rl |r/1fra{/§d CUtOT a}nld theff “Kolmogorov  scale”

tion caused by the term proportional to the molecular diffu-77_(” D)™ as anu travio ?t Cutoft. . .

sivity ». The velocity fieldu with V-u=0 is supposed to be We shall be interested in the correlation functions of the

randon"; We shall work ii=3 space dimensions and shall scalar in the inertial rangg<<x<<L. The main result of this

assume homogeneity, isotropy, and parity invariance of th@aPer 1S that in th|§ range the Stationary-state, equal-time,

advecting flow and of the forcing. even structure functions scale with the anomalous exponents
The statistics of the forcing term is assumed to be Gaus<2N as

ian with mean zero and two-point function

([T(x,t)—=TOH V) =ay

L \eN
m) |X|(2—§)N/2, (5)
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N(N-2) 5 dimension sincel?(x) and d(x)Vf( have opposite naive di-
PN= §m +0(£9). (6)  mensions. However, as a consequence of the reléBipone
finds thate(x) acquires an anomalous scaling. In fact, the
The exponents are universal depending onlyZobut the  definition (8) and Eq.(16) allow one to compute any struc-
amplitudesay are not: they depend on the shape of the coiure functions with(noncoincidentinsertions of the dissipa-
variance C. The error term is bounded by tion field. For example, the connected two-point function of
O((L/|x|) ~2+0)|x|2~=8N2) 50 it is strongly suppressed for € scales as
largeL/|x|. As it should be, thepy's satisfy the Héder in- L \pa
equality py=[(N—2)/2]p,. More precise descriptions and <e(x),e(0))°~<—) 9)
statements will be given below. The formu®) agrees with |x|
the N=4 result of[2] and with the 1d expansion of3,5]. , ) . ) .
Following Ref. [2], we shall derive the values of the @nd it decreases witfx|, in agreement with the physical
anomalous exponents by analyzing in perturbation theory ipicture of the dissipation being a local process. Similarly, the

¢ the zero modes of differential operators characterizing th&-Point functions ofe scale with exponentp,. The short
stationary state. Although fot=0 one observes a purely distance singularity in Eq9) is an unphysical artifact of the

diffusive behavior ofT and for&>0 an inertial energy cas- assqr_ned_ short distance sca_ling Qf the advecting velocity,
cade, the zero modes differ little in both cases. Their behayMellified in real systems by viscosity.

ior in ¢ may be controlled by perturbation theory of singular h Tg_e same method allows one to (r)]bt%l_r;fmform?tlon apout
elliptic operators with discrete spectrum. Different physicst e dissipative terms appearing in the ditferential equations

arises from the cumulative effect of the zero modes. As al_obeyed by the structure functions and to compare our results

ready stressed ifi2], this resembles the situation in the with the early attempté?] to calcul_ate the anomalous expo-
renormalization group analysis in field theory or statistical?€Nts Of the passive scalar and with the more recent @as

mechanics where relevant perturbations, controllable in thgbout the behavior of the probability distribution functions in

single scale problem, may have large effects on the behavidp€ turbulent systems.

of the system. As in the renormalization group study of criti-

cal models, the first order perturbative corrections to the zerd- INERTIAL-RANGE SCALING AND THE ZERO MODES
modes lead to the resummation of leading infrared loga-

r_ithms_ in the perturbation_expansion of the structure func'Which may be deduced using standard functional manipula-
tions in powers of. Pursuing the analogy further, we shall oo of sochastic differential equations, see, 4. or, for
introduce, as in the perturbative renormalization group, the(he present context10]. In the stationary state, the odd cor-

notion of matrix of anomalous dimensions, see 4 . relations vanish and the even ones satisfy at equal times the
Our results can be used to deduce the scaling properties entities

the correlation functions of the dissipation field, which we
denote bye(x), as discussed, for example,[iB,6]. At finite N
diffusivity v+ 0, the dissipation field is defineghside cor- (— » Aj+ %D(d—l)MN (T(Xq)- - T(XN))
relatorg by e(x)=vlim,, _(VT)(x')-(VT)(x). This is a =1

sensible definition since at finite the correlations off and

their first derivatives are not singular at coinciding points =2 C(Xj /LT (Xy) “z+ -2 T(XN))s (10
(the higher derivatives ayeln the limit »—0, we have al- i<k Ik

ternative definitions:

The correlation functions of satisfy the(Hopf) identities

with Xj,=X;— X, A; denoting the Laplacian in the vari-
e(x)=lim v lim (VT)(x')- (VT)(x) 7 able, and with My standing for the differential operators
v—0 /Ly given by

or D(O) N 2
3D(d—1)My=— —(;l vxj)
e(x)= lim 5[dB(x—x")dyady 5] iMT(X)T(X). (8)
x| =X v—0 —|—% daﬁ(xjk)&xjao"xf. (11)
k

H

The order of the limits in the first definition is crucial

since when v—0 and for small [x—x'|, T(x)T(x") The first operator on the right-hand side of Efjl) is zero
~|x=x'|>"¢ modulo more regular terms so that by translation invariance an#ty is a sum of the two-body
(VTY(X) - (VT)(x")~|x—x’| ¢ and becomes singular. The operators. For>0, the operators appearing on the left-hand
noncommutativity of the limitsv-—0 andx’—x is at the side of Eqs(10) are elliptic and positive. We may use their
origin of the dissipative anomaly. The second definition ofGreen functions to solve the equations inductively. This will
e(x) is in the spirit of the operator product expansion in theproduce equal-time stationary correlators decaying at infin-
v=0 theory. Using the Hopf identitie€ 0) for the correla- ity. Physically, they describe the stationary state obtained by
tion functions, we shall argue that both expressions for thetarting, e.g., from a fixed localized configuration of the sca-
dissipation fielde(x) coincide foré<1. The mean dissipa- lar and waiting long enough.

tion e=(e(x)) is equal toj C(0), i.e., to the mean injection Notice that até=0 the operatorM,y reduces in the
rate of energy. The dissipation field has zero naive scalingranslation-invariant sector to the LaplacianNhvariables
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X;: MN|§:0=—AN=—21N:1A1- This implies thatT be-  With const=0(L2"¢). It follows that até=0, whereT be-

comes a Gaussian field §=0 with the higher correlation comes a Gaussian field,

functions built in the standard way from the two-point ones. — 0
The stationary state coincides then with that of the forced (TOx2)- - TON)|g=0=CNEo(Xp - X +L. -], (15
diffusion with the effective diffusion constant equal to
v+ iD(d-1). where c),=(—e/Dd(d—1))N2. The error not contained in

We shall describe the inertial-range correlators by takinghe[ . ..] terms is bounded b@(L ~%(maxx;/)N*?).
the limit »—0 at fixed positions(; and fixed large infrared Upon switching on positive, the symmetric zero modes
cutoff L. It is not important that positions; be disjoint as  of degreeN will evolve to zero modes oMy with a modi-
long as we do not take derivatives of the correlators, see thiteed homogeneity. They may be found by the degenerate per-
remarks after Eq(8). In the limit v— 0, the correlation func- turbation expansion. Again, only one of them will not come
tions satisfy Eq(10) but without the terms’A. These equa- from the zero modes of1 ;. We shall call itF,. Although
tions completely determine the inertial-range correlators ugor & positive,T is no longer a Gaussian field, its correlation
to zero modes of operatorsty . Physically, the zero-mode functions may be inductively computed from EQ.0). In
contributions are fixed by the fact that we consider the sysparticular, it is easy to see that the simple expressions
tem which is the limit of the one with positive diffusivity
v. Mathematically, this means that in order to inductively (2= &NR2

: . AN E |Xjk| '

solve Eqs.(10) we should use Green functions of the singu- 1=<j<k=<N
lar elliptic operatorsMy . Such Green functions are limits of
the Green functions of the nonsingular operators correspondvhere the coefficients
ing to thev>0 case. It has been argued in R¢f-4] that

A i — N/2 Ni2—1
the zero modes of operatorsty effectively appear in the _2(N-2)! —€ T [d+(2
inertial-range correlators and give the dominant contribu- NT (N2 | (2—6)D(d—1) =0 (
tions in the limitL—oo.
The zero modes in question are homogeneous under dila- -9

tion, invariant by translations, rotations, parity, and symmet-

fic under permutations dfl points. SinceMy is a sum of Sausfy the version of Eq(10) with »=0 andL =c. This
two-body differential operators, zero modes.bfy_; lead scaling solution obviously leads to vanishing higher structure

by symmetrization to zero modes #fl, . More precisely, if functions ar|1dt canr]ror: glr:/e the right answer for dthe '??r:t'al'
fro1(X1s . .. Xy_1) is a zero mode ofVty_;, then range correlators. The homogeneous zero modes of the op-

eratorsMy, which enter already at the first inductive step
[the constant in Eq(14)], modify the answer. At further
FXes - X = 2 Fue (Ko@) - -« Xono1), (12 inductive steps, the previous step modifications will induce
oSy new ones which, however, all give rise to combinations
[...] of functions depending on fewer variables except,
where the sum is over the permutationsMfobjects, is a €ventually, for the terms proportional to zero modes of
symmetric zero mode oMy . These zero modes will never My . If the homogeneity degree of the zero mode is smaller
contribute to the structure functiod;[ T(x;)—T(y;)1). At than (2-£)(N/2), the proportionality constant will contain a
£=0, the zero modes aMy=—Ay are polynomials. For compensating positive power of and may give the contri-
any everN>2 there is only one “new” zero mode of scal- bution dominating the large structure functions if the zero
ing dimensionN that cannot be expressed as a symmetrizednode is not of the ... ] type. Indeed, for small positivé
sum of the zero modes o¥1_;. We shall denote it b, there is only one nop- ..]-zero mode which we have de-
(of course,E, is defined only up to a combination of the noted byF,. Its homogeneity degree is {2£)(N/2)—py

latten. Explicitly, with positive py, as will be demonstrated below.
As a result, for smalE>0,
Eo(xl, s ,XN)= 2 H X|2 | +[ . ] <T(X1)'”T(XN)>ECNLPNFO(X11 e lXN)+[ . ']1
pairings {0 _ )} (1-1)  —F (16)

1=<l_<I,=<N
(13)  with the nonf...] error bounded by O(L™270®
X (maxx)N*279). For ¢ not very small, the perturbations
where the dot$ . . . ] refer to quantities which may be writ- of zero modes which a&=0 have degree higher th&hmay
ten as alsymmetrized sum of functions depending only on eventually enter the interval of scaling dimensions smaller

N—1 variables. than (2— ¢)(N/2) and give non-negligible or even dominant
The two-point function of the scalar in the inertial range iscontributions to the structure functions. The largeand
[1,10 £—0 limits of the correlation functions df do not commute

since the terms scaling with different powerslofbecome
€ degenerate fog=0, sed2]. These limits, however, do com-
(T(x1)T(xz))=const- mm#*g mute for the structure functions involving only tig con-
tribution scaling asL®® and the error bounded by
+O(L2x9*79), (14 L7290, AsFy|;_o=E,, it follows by comparison of15)
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and (16) that the amplitudey=cX+O(£). The O(£) con-  The solutionsG of this equation are clearly defined up to
tributions to the amplitudesy depend on the shape of cova- zero modes ofAy. Note that due to the scaling properties of
rianceC and hence are not universal. E andVy,

The relation(16) implies the behaviot5) of the N-point

. — _ N _
structure functionsSSy(x)={[T(x)—=T(0)]"). In the Gauss _AN(E xfaxja—N)G= _(2 xj“axja—N+2)ANG

ian limit,
Su()|g=o=aRIx|", 17) =—(E xf‘axja—N+2)VNE
where =A\E=0. (22)
N! € \N2 . : .
al= Hence the functiole’ = (2x;"dy=—N)G is necessarily a zero
N (N/2)!' | Dd(d—1) ]

mode ofA . We shall show that there exist solutio@sof

It follows from the continuity of the structure functions Ed- (21) such thate’ are homogeneous polynomials of de-

at £=0 that the amplitudeax in Eq. (5) is equal to 9reeN. Such solutions are defined up to degmdezero
aﬂ,fO(g). P N 9O a modes ofA but this ambiguity does not show up if. We

In the perturbation expansion in powerséf obtain this way a linear transformation

Fo=Eq-+£Go+0(£2). (19) IE—~E
of the space of symmetric homogeneous zero modes,of
of degreeN. If (E,) is a basis of this space then the matrix
(T}) of this transformation given b¥,=TFE, plays the
role of thematrix of anomalous dimensiord first order in

In the next sections, we shall compute thé¢) contribution
G, (modulo[ .. .] termg. Inserting the decompositiof18)
into (16), we obtain an asymptotic expression for the struc
ture functions which, although obtained by the first order ) be X :
zero-mode analysis, contains all orderséimesumming the - Indeed, ifE=v"Ey is an Elg_envalug eigenvector of the
series3 a,£"(InL)" of logarithmic infrared divergences ap- tragsformatlonl", i.e., if (v°) is an elge.nvector of matrix
pearing in the expansion of the structure functions in powerél'b), then, for the corresponding solution of E@1), we
of £ This is the situation well known from the perturbative OPtain

renormalization group where the first order approximation to

the single renormalization group step leads upon iterations to (2 X N) G=)\E (23)
the resummation of the leading logarithms in the perturbative I

expansion of correlation functions.
or

IIl. ANOMALOUS DIMENSIONS AT 0O(§)

o Nl _ 2
Let us discuss the perturbative calculation of the homoge- 2 X 6*," N 5)‘) (E+£G)=0(£), (24

neous zero modes o¥1y . At the first order in¢ we have
which means thaE+ £G is homogeneous of ordéd+ &N

My=—AN+ EVN+O(£2), up toO(£?). Hence the homogeneous zero modedtf are
perturbations of theé=0 zero modes corresponding to
with Ay the Laplacian inN variables and/y given by eigenvectors of the matrix of anomalous dimensions. If the
" matrix (I'§) is not totally diagonalizable then there will be
Ve = E SN[ x| — 1 XX Jadop logarithmic corrections to the zero-mode homogenEify).
N 1<jFk<N K (d-1) |xjk|2 XX Reflecting the fact that all but one zero modes\df; are
obtainable from those oMy _, by symmetrization, the ma-
1 A trix of anomalous dimension is block triangular. Namely,
———Ay. (19
(d—1)
rs o
Note that, sinceMy is a homogeneous operator of dimen- (TH= 2 al
sion é—2, we have Iy Ty

if the matrix is written in a basi¢Ey, (E,/)) whereEg is the
=—AN—2Vy. (200 zero mode defined in E413) and (E,/) forms a basis of the
degreeN zero modes arising by symmetrization of functions
Let E be a symmetric homogeneous zZero mode o1depending on at mofNl—1 variables. The matrix element
My ¢=o of degreeN. We shall search for the zero mode of I'g is necessarily an eigenvalue of the matri). If by an
My of the formF=E+ £¢G+0O(£?). The zero-mode equa- adequate choice of the. . .] terms in its definitionE, be-
tion gives at the order linear ig comes the corresponding eigenvector of the transformation
I' thenFy=Ey+ £Gy+ O(£2) describes the perturbed homo-
—AyG+VNE=0. (21 geneous zero mode @#y anng gives theO(¢) correction

[2 XjaU')XJfIIVN
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to the scaling exponent &f, equal toN in the leading order. polynomials of degreéN. Thus, given the solutiof;, of
The anomalous exponent of thepoint structure function is  Egs. (28) and (29), there always exists a degréepolyno-

therefore given by mial H solving Eq.(30) and it is unique up to the zero modes
of Ay.
= — € N L0 25 . We are thus left with solving Eq$28) and(29). We shall
2 0 first prove that there is a unigue solution of these equations

and then we shall produce the solution when the initial zero

since the naivéN-point scaling dimension is (2£)(N/2). modeE is the “new” zero modeE, defined by Eq.(13).

In principle it may happertalthough it does not at least Notice that this is now Eq.(28) which implies that
for N=2,4,6) thatl'] is a degenerate eigenvalue Bfand 2j+kHjk is a zero mode ol . By symmetry, we may spe-
there is no corresponding eigenvecty. It is easy to see, cialize Egs.(28) and (29) to j=1k=2. Let us work in the
however, that even in this case there exists a zero modgariablesx=(X;+X,)/2, y=X;5, andXs, ... Xy. We have
Fo=Eq+ &éGo+ O(£2) of My which is homogeneous of de- X12-V1,=2y-V,. Sincey-V, counts the degree iy, we
greeN+ £T0+0(£%) up to[ . ..] terms(the homogeneous shall decompose all terms entering in E29) into a sum of
terms are accompanied by the ones with powers of logaterms of given degree iry. Namely, H12=2Np=0H(l‘§),
rithms, the latter appearing in tHe ..] subspace Such KlZZEg;gK(lg), and
modifications would not affect the analysis of the structure

functions. N

1 -
_ a B — (p)
X Jyad,8)E= E, E'™,
IV. LEADING ORDER CORRECTIONS 2(d—1)( 12920x;9x¢) p=2

TO THE ZERO MODES

Let us return to the analysis of E(21). We shall search with H{?, K{% , andE(® homogeneous polynomials inof
for the solutionG in the form degreep. The operatord—2+2y-V,) is invertible on such
homogeneous polynomials. Equati(#®) implies then that

G=;k (HjiIn|x; D +H, (26)
| HIY =H=0,
with Hj, andH polynomials of degred\. For such a solu-
tion,
= 1 _
Hg_?:m E(p)—jyzK&g 2)) for 2$p$N
E'E(Z x]-‘”&xja—N>G=j;k Hik (27)

The fact thatH{9=H{})=0 implies thatH,, scales as

would necessarily be a zero mode &f; of degreeN, as J?(12|2 whenx;—x,. Equation(28) may then be rewritten as

required. We shall see that there indeed exist solutions
(21) of the form(26) (unique up to degreBl zero modes of
Ay) and that the polynomialsd;, scale as|x;/? when 20 HPY) = (V- V,E)P72—ALH{H™?

|xjx|—0 assuring that the logarithms {@6) do not lead to

divergent singularities in the correlation functions Dfat

coinciding points. Note, however, that the divergences at cofo;y p=2, whereA* = %AXJF 2}\'=3A,- _ With the use of the
inciding points start to appear in the correlation functions

involving double derivatives off or products of two first Previous relation betweeti{y) andy®K {5~ the latter equa-

derivatives. tion takes the form
The substitution of the ansat26) into Eqg. (21) gives a
set of three equations fdt;, andH: Ay(yZK(fé)):fp
ANij:VJ'VkE, (28)

for some recursively known homogeneous polynomfals
(X2XB 3,0, 8)E These equations may be solved Kwﬁ’;) since Ayy2 is an
IR invertible operator on the space of homogeneous polynomi-
als of fixed degree.
=— %ijkKjkv (29 Let us find the deformed zero modg which at =0
reduces tdE, of Eq. (13). To solve Eqs(28) and (29) (by
symmetry, we may again spt 1 andk=2), we first have to
AgH=S Ky, (30 compute ¥1-V,)E and (xfzxfz&xfaxg)E.
j#k

1
(d_2+xjk'vjk)ij+ m

where K, are polynomials of degreeN—2 and Vj _ , 2
=V, -V with Vj=(ﬂxja). Equation(30) is for free since any (V1:Vo)E=—2(d+N-2)X (LHM X, L i

polynomial of degredN—2 is in the image ofA acting on (31
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AN 2
(X‘fzxfzaxi“ﬁxg)E: —2x5,2 r l_ll R
L
2 2002 2
+2 > (X7} = X%j) (X = X%k)
3<j<ksN

XZ"(IH Xt AT (32

)

where 2’ denotes the sum over pairind$l _,I,)} with
3<|_<Il, <N andX” a similar sum but with, additionally,

I.#j,k. The symbol .. .];, refers to a sum of terms which

do not depend on at least org with p=3. Recall from the
proof of existence of solutions of Eq&28) and (29) that
Hy, has to scale at least &s,;,|2 asx;—X,. It follows then
that it must be of the form

H12:a|_12+ bxizzl " H ) X|27|+—’_[ b ']12 (33)
—ly

for some coefficients andb where

L= > (Xij_XEj)(X%k_ng)zﬁ I1 X|2,|+-
3<j<k=N (-
(34)
Note two properties of ,:
(X12' Vi) L1p=4L 15, (39

ALy,=—4(N-2)>' (IHI )x|27|++[...]12. (36)

The first relation just means that, is a homogeneous func-

tion of x4, of degree 2. It implies that
(d=2+X12 Vi Hp=(d+2)H ot [ . .. Jao.

Comparing this with relatiort32), we obtain from Eq(29)
the value of the coefficierd:

1

=T d-1d+2)"

2569

Next, it follows from relation(36) that

4(N-2) ,
AH12=(m+4db)2 H

2
Xy, tle i
(!

Comparison of Eqgs(28) and (31) gives the value of the
coefficientb:

B 1( N—2 d+N—2)
b=—Gl e D@+ " 2

This completely determindd, up to termq ... ]45.

Finally, in order to find the anomalous dimensibf, we
recall that the matrix of anomalous dimensions is found by
looking at=; . H;, cf. Eq.(27). I'J is obtained by project-
ing relation(27) on Eg using the triangular structure of the
transformationl’. Gathering all the terms in Eq33), we
obtain after a simple algebra

> H

N(d+N
_ (d+N) IT <t +[...]
J#k

k= 2(d+2) pairings (1 1)} (1-14)

I<l_<Il, <N

NN
——mE0+[...].

Thus

N(d+N) N N(N-2)

o 2dv2) 2 2dr2)

(37
which via Eq. (25 leads to the claimed valués) of the
anomalous exponempty .

V. DISSIPATION FIELD

Let us sketch the argument for the equality of two defini-
tions (7),(8) of the dissipation fielde(x) at v=0. First, we
shall retrace the self-consistency arguments about the short
distance behavior of the correlation functids6]. These go
as follows. By separating terms, the Hopf identify0) may
be rewritten in the form

[~ VA1~ vAy+ 3D(d— 1) M1 ] (T(X) T(X2) T(X3) " T(X))

N
=J§3 [vAj— 3D(d— 1) (M 1))+ M) T TOx))

= 2D 3 Mo{TOw Tow)+ 3, COILT0) -2+ Tox),

(RN (38
ik

where the two-point operateirD(d— 1)M(j,k)zd“ﬁ(xjk)axjaaxf. In variablesx=(x1+X,)/2 andy =Xx,, the left-hand side of

Eq. (38) becomes

[—20A,— d*B(y) dyadys— 3 VAT 30(Y) dyadys] (T(X1) - T(Xy))-

Equation(38), with the use of the latter decomposition and of the relatipn= ’9Xi‘+ axg= —E]N:3(9X{¥, allows us to write
]
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[—2vA,—d*A(y) dyady s T(X+ 3 Y)T(X— 3Y) T(X3) - T(Xn)) =R, (39)

where R is a combination of terms involving onlyx; derivatives and at most firsty derivatives of
(T(X+ 3Y)T(X— 3Y)T(X3)---T(xy)). Let us assume that the limit wheq,—0 of (T(x1) T(X2) T(X3)---T(xyn)) and of
((VT) (X)) T(x2) T(x3)---T(xy)) and of their derivatives ovex;, j=3, exists uniformly in smallv>0 (for separated
X,X3, ... Xy)- Then, as in the analysis of the two-point functigvith anisotropic forcing one infers from Eq(39) that

(T(X+ 3Y)T(X= 3Y)T(x3) - T(xn))=Caly|[ v+ 3 D(d—1)]y[¥]*

+ zero modes off —2vA,—d*(y)dyad,s]+error, (40)

the coefficients depending orx,xs,... Xy and the ergy on long scales. Note that the right-hand side may be
error more regular whem—0 andy—0. The zero modes viewed as a direct application of the second definiti@nat
contain a polynomial of the first order iry. Of the &=0 whereas the application of the first of¥ would give
remaining zero modes the most dangerous one comegx)=0: the equivalence of the definitions breaks down at

from the angular momentum 2 sector and it&=0. At v=0, thex’'—x andé—0 limits do not commute
behaves as O(ly|®? for w»<3iD(d—1)|y|!, where for (VT)(x’)(VT)(x) although they do commute for
wy= L[~ d+2— £+ [A—27H2F8d]>2—¢, and as T(x")T(x) or for (VT)(x')T(x). This is due to the disap-

O(|y|?) for 3 D(d—1)|y|é<wv. All such terms and their first
y derivatives have limits wheg— 0 uniformly in smallv.
As we see, our assumptions about the correlator® aife at
least self-consistent. They are confirmed by @{&) com-
putation of the structure functions. Indeed,1at 0 and for
large L the structure functions receive the dominant contri-
bution from the zero modeB, of My which behave like
£0(]y|»Inly] modulo a first order polynomial iry and
O( &%) terms, in agreement with the above analysis. Note th
the £0(|y|?)In]y| contribution toF is not rotationally invari-
ant iny: it receives contributions from both th@(|y|?~¢)
and the O(]y|*?) angular momentum 2 terms
(T(X1)" - T(xXn))-

Let us use our self-consistent assumptions abo
(T(xq):--T(xX2)) in a version of Eq(39):

in

[20V;- Vo +d*#(xy) f9x‘1“9x§]<T(X1)T(X2)T(X3) -+ T(Xy))

=R'. 41
ExpressiorR’ involves only terms with at most one deriva-
tive overx, or x,. Therefore Iim,ﬂolimxlfoR' should exist
and be equal to lig)__olim, oR’'. The same limits applied
to the left-hand side af41) give, depending on the order, the
definition (7) or (8) of the dissipation field insertios(x),
provided thaté>0. Indeed, under firsk,;,—0 and then
v—0 limits thed(x,,) V.V, term disappears due to vanish-
ing of d(x) at zero while sendingg— 0 before thex;,—0
limit kills the vV, -V, contribution. Hence the equivalence of
two definitions for G<é<<1.

By similar arguments, all three limits lign,g, Iimxlﬁo,
and lim._,, commute in the action oR’. Applying them on
the left-hand side of Eq41), we infer that atv=0

lim e(x)= 3D(d—1)[VT(x)]?
&—0

(42

and it describes the dissipation field of the scdlatiffusing
with the diffusion constant D(d—1) and dissipating en-

pearance of the distinction between the dissipative and the
inertial-range behavior af=0. A straightforward calcula-
tion employing the relatio42) shows that at noncoinciding
points

lim lim(e(Xy), .. .,e(X,))c=2""1(n—1)1d "€,
L—ow &0

akn particular, fielde(x) becomes constant in spaceé&t0

andL =, in agreement with the physical picture of dissipa-
tion becoming a large scale phenomenon wker0.

The inertial-range decag®) follows from Eq. (16) with
the use of the definitiof8) of the dissipation field and of the

Jact that(e(x))?=€? gives for largeL a subdominant con-

tribution to(e(x),e(0))¢, se€[6] for a similar analysis. From
Eq. (43) we infer that the proportionality constant (@) is
equal to Z2%/d+ O(£). Similarly, the mixed correlation func-
tions

(e(xq) - €(Xp) T(Y1) " T(Ym))

scale with the infrared cutoff ak”2n+m and with positions
with exponent (2- £)(m/2)— pon+m, iN accordance with the
fusion rule arguments dfL2,13.

VI. EQUATIONS FOR STRUCTURE FUNCTIONS

Much of the past attempts to understand the behavior of
the structure functionSy was based on the differential equa-
tions satisfied by therfi7]. These equations may be obtained
from the N-point function equation(10) in the following
way. Let §;(x,y) denote the difference operator acting on
functions ofN variablesf(xq, ... Xy) by subtracting their
values atx;=x andx;=y. §;(x,y) commute for differeng
and ([T()— T 1Y =1 5,(xY){T(X0), . .. T(xn)). Ap-
plication of IT; 6;(x,y) to Eq.(10) results in the identity

—d“'g(x)ﬁxa&xBSN(X)JrN(N—1)[C(E) —C(O)}SNz(X)

In(x), (44)
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with the dissipative contribution lation. The latter was based, however, on the definitiés)

applied directly in the Gaussian case whereag=a0 one
IN)=2uN((AT)(X)[T(X)=T(0)]N"1. (45  should use fody the expressiol46) with e(x) given by Eq.

(42). The latter calculation agrees, of course, with EB):

Alternatively, Eqg.(44) may be obtained directly from the

basic stochastic differential equatigh). Despite prefactor — _RO[y|N-2 4

v, the termJy does not vanish when—0 due to the dissi- In)g=0= = blx[™5 49

pative anomaly. Indeed, coefficientmay be absorbed into where b=D(d—1)N(d+N—2)a% see Eq.(17). In this

the insertions of the dissipation field: limit, the differential equation (44) reduces to

In(X)=20AS(X)— 2N(N—1 T(x)=T(0)]N2 ~DUd=1)ASyl¢0=Inle=o
n(X)=2vASy(X) ( He)[T(X)=T(0)]™ <) Above, we have studied the inertial-range behavior of the

—2N(N=1){e(X)[T(x)=T(0)]N"2)],_o. structure functions. More general objects to study are the
50 " joint  probability  distribution  functions (PDF's
(46) Pnu(Tq, .o TN X4, - .. Xy) Of the scalar whose moments

give the equal-time correlation functions. In particular, the

. , N N structure functiongIl;[ T(x;) —T(y;)]) are special moments
The mutual nonsingularity o&(x) and[T(x')—T(0)]" at of the PDE’s

x=x" andv=0, which has been assumed in the last expres-

sion forJy, may be checked by a self-consistent analysis or

directly for the perturbative solution. T To _ J' Po(T-+ T
Our result(5) about the asymptotics of the structure func- Qn(Ta, o TiiXa, - X (T2t

tions and Eq(44) imply that atv=0 and for largeL + oy x)d7, (50
3]s+ AN [}

_ 2-&)(N-2)/2
In(X)= = by (L/|x])PN|x| 2= ON=272, (47)  which are translational invariant in tievariables. The gen-

. erating function ofSy’s,
with 9 N

0+ (2~ €)1 pu . ZOux=(eMT0 T - [ QAT (51

N
bN:D(d_l)((Z_g)E_pN

) ) is a Fourier transform of the PDFQ(T;—T,;X10)
Note that the last expression may be rewritten as =Qu(Ty, ToiX1,%,).
be S In a recent papef8] on the Burgers equation, Polyakov
I = a20n ) N(X)_ (48) has argued that the structure-function PDF'’s exhibit a uni-
anb, " Sy(x) versal inertial-range behavior fgtranslating his statements
) ) . . ) to the passive scalar caseT;<T,,s Where T,
This relation may be confirmed by a direct calculation of — /<T(0)2)=O(L1*§’2), see Eq.(14). Polyakov's analysis
Jy to orderO(£) from the dominant zero-mode&, contribu-  \as based on postulating an operator product expansion

tion to the correlation functions. _ which allows us to close the resummed version of @d),
In the inspiring papef7], Kraichnan attempted to obtain

anomalous exponents from E@4) by assuming a relation

similar to (48) but with — d¥B(X) dyadysZ(N;X) + N2 C(O)—C(E) Z(\;X)
by _[(2=&)(N2)— pyl{d+ (2= H[(N=2)/2] - py} — I, (52)
anb; (2=¢§€)d

by expressing its right-hand side J(\;X)
replaced byN/2. This was further argued for ii6]. Kraich- =3[ (i\)V/N!Iy(X) =2A2%(e(x)eMTI-TOD)  again in
nan’'s assumption led upon insertion intd4) to the qua- terms ofZ(\;x). The resulting equation foZ may be re-
dratic equation for the scaling dimensiofiy=(2— &) duced to an ordinary differential equation by imposing the
X(N/2)—pn, scaling relation

N . —_— — . —
INnFTd=2+§)=(2-§)d, [2x-V— (2= &N\ ]Z(\;x)=0, (53)

i.e., by postulating thaZ(\;x) depends or\?|x|?>"¢. Note
whose solution gave the anomalous exponegtsNote that that a strictly scaling solution faZ(A;x) implies either the
the replacement of the factdt/2 on the right-hand side of Kolmogorov scaling or divergence of the structure functions.

Kraichnan’s equation fofy by a,by /ayb, leads instead to a For example, the resummation_ of the_ express((lﬂi;fo_r the
tautological identity. £=0,r=0,L = structure functions gives the Gaussian gen-

Kraichnan’s values ofy, unlike the ones obtained in the €rating function

present work, do not vanish §=0. The latter might seem
strange in view of the fact thdt becomes a Gaussian field at
£=0 and the ansatz gf7] was fit with the Gaussian calcu-

Z()\;x)lg_ozexp{—m)ﬂxﬁ , (54)
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which scales in accordance with the normal scaling of the &d é

£=0 structure functions. It corresponds to the Gaussian 2X'V—(2— g2/ T d+2()\§>\)2 Z(N\;x)=0(&).
PDF. A straightforward check shows that&t 0 the dissi- (55)
pative termJ may be simply expressed in terms ofitself; i . i

J=2eN[ 1+ (Ld)\dy]Z. It would be interesting to recover the tail of the structure-

: : function PDFQ in the orderO(£). This would require the
us (t):rpsr‘g/?a"irag?s%fcl)svgf;rcl)(leyzlis\?’“s/epis;tilrzr (sji%ise rt]ﬁte ai:?j\;Yknowledge of thed(¢) contributions to the nonuniversal am-

. : plitudesay in the relation(5) which we have not computed.
wdual_structur_e functions that we _study probe the small ;g possible that they may be found by a perturbative analy-
behavior ofZ, i.e., the largeT behavior ofQ(T). What fol- s of instanton contributions to the functional integral for the
lows from it is that the largeT tails of the PDF’s violate dynamical scalar correlatof41]. We expect that the refined
scaling foré>0. In particular, the solutiof5), (6) for Sy’s  perturbative analysis i will allow a better control of both

leads to the relation the structure functions and the corresponding PDF’s.
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